T-VER-P-METH-14-03

Production and Utilization of Biochar

Version 01

Scope: 05 - Chemical Industry

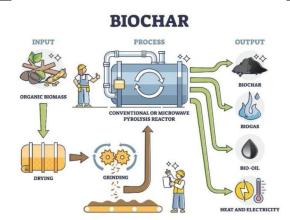
Scope: 13 - Waste Handling and Disposal

Scope: 15 - Agriculture

Entry into force on 24 September 2025

1. Methodology	Production and Utilization of Biochar
2. Project Type	Capture, storage, and/or utilization of greenhouse gas
3. Sector scope	Scope: 05 - Chemical Industry Scope: 13 - Waste Handling and Disposal Scope: 15 - Agriculture
4. Project Outline	A project involves the production of biochar from biomass and the application of biochar to soil and non-soil materials for the purpose of permanent greenhouse gas sequestration over a 100-year period
5. Applicability	 The project activities shall include: The removal of greenhouse gases through the conversion of biomass into biochar with high resistance to decomposition when applied in environmental settings. The application of the produced biochar in areas where its long-term resistance to decomposition can be monitored over a 100-year period. The biochar shall be utilized in ways that preserve its greenhouse gas (carbon) sequestration properties. Eligible utilization formats include the following:
6. Project Conditions	Biochar must be produced from sustainable biomass sources, such as agricultural residues, wood waste, food waste, and other materials (as specified in documents published by the Intergovernmental Panel on Climate Change, or IPCC; see document title in Section 10). The biochar must comply with the following conditions:

- 1.1 In the case of sustainable agricultural residues, at least 30% of the residues shall be left on the cultivation area to avoid adverse impacts on soil health and agricultural productivity.
- 1.2. Damaged wood resulting from natural disasters shall not be considered a sustainable biomass source.
- 2. The primary biomass feedstock used for biochar production must originate exclusively from sources within Thailand.
- The primary biomass feedstock for biochar production must be utilized within one year of collection and must not be stored under anaerobic conditions.
- 4. Pre-treatment of biomass prior to biochar production shall be limited to mechanical processes (such as compression, pelletizing, and cutting) and thermal processes (such as drying and roasting) only.
- 5. Project developers must demonstrate net outcomes across the life cycle of biomass fuel sourcing, biochar production, and biochar utilization. The assessment shall include data disaggregated by process stage and by type of greenhouse gas.
- Fossil fuels (e.g., coal, fuel oil, and natural gas) may be used to supply initial heat for start-up in the biochar production process.
 However, co-combustion of fossil fuels and biomass is not permitted, as fossil carbon may contaminate the biochar product.
- 7. Syngas generated during the biochar production process must be combusted or recovered through engineered systems to prevent methane emissions to the atmosphere. Additionally, syngas and bio-oil (products derived from syngas) may be stored for future use as renewable energy or material inputs.
- 8. For each biochar production cycle, only one type of biomass is allowed and measurements of biochar products corresponding standard biochar composition must be completed for each production cycle.



- 9. Project activities must include measures and conditions to ensure safety operations, including safty handling and transportation of biochar, provision of material safety data sheets, temperature reduction of biochar after production, and installation of appropriate exhaust gas treatment systems.
- 10. The produced biochar must meet the specifications set by relevant Thai authorities (if available) or other applicable standards, such as the International Biochar Initiative (IBI) Biochar Testing Guidelines, the European Biochar Certificate (EBC), the Japanese Industrial Standards (JIS), and the Japan Biochar Association Standard (JBAS).
- 11. The produced biochar may be utilized only within Thailand and must be applied within one year from the date of production.
- 12. Project developers must specify the geographic coordinates of areas where biochar is applied, the quantity of biochar utilized in each location, and establish a method for tracking the applied biochar throughout the 100 year period
- 13. The produced biochar must not be used in ways that result in the reversal of sequestered greenhouse gases (carbon), such as combustion for fuel, conversion into activated carbon, or use as fuel in steel production processes
- 14. The produced biochar must not be applied to soil located in areas prone to recurrent flooding. The project developer is required to provide official documentation of the area from relevant authorities, such as the Land Development Department.
- 15. Biochar must not be applied to soil in areas where greenhouse gas reduction, removal, or sequestration activities are being implemented in the forestry and agriculture sectors
- 16. Soil application of biochar through land burial must be conducted at a depth of no less than 10 centimeters and must be certified by relevant experts or authorities confirming that the burial depth does not fall within organic soil classification to minimize the risk of

	carbon reversal. The project developer must specify the maximum
	quantity of biochar to be applied, ensuring that it does not cause
	adverse impacts particularly regarding potential contaminants in
	the biochar and post-application soil quality in the Sustainable
	Development and Safeguards Assessment Report
	17. The project developer must implement risk mitigation measures to
	prevent biochar applied in non-soil materials from being subject to
	burning, land-use change, or natural degradation.
	18. In the event that any issue is later identified which affects the
	carbon sequestration of biochar that has been utilized, the project
	developer shall be responsible for compensating the certified
	carbon credits issued by TGO, in accordance with the measures
	stipulated by TGO
7. Project Starting Date	The date on which the project owner (employer) and the contractor
	jointly signed the construction or installation agreement for the
	greenhouse gas reduction project to be developed as a T-VER project
8. Definition	Biomass residues refer to Agricultural residues from harvesting or
	processing activities such as rice husks, sugarcane bagasse, rice straw,
	and corn cobs as well as wood and wood waste that can be used as
	fuel or naturally decomposed
	Biochar refers to a carbon-rich material produced by heating biomass
	under low-oxygen or oxygen-free conditions, resulting in the conversion
	of carbon in the biomass into a stable solid form. Other by-products
	may also be generated during the process, such as synthetic gas
	(syngas) and bio-oil (products derived from syngas), as illustrated.
	Biochar must meet relevant standards, such as the IBI Biochar Testing
	Guidelines, the European Biochar Certificate (EBC), Japanese Industrial
	Standards (JIS), the Japan Biochar Association Standard (JBAS), and
	applicable standards issued by relevant authorities in Thailand (if any)
	, (ii 2y)

Gasification refers to Thermal conversion of biomass under low-oxygen conditions, producing biochar, syngas, and other compounds, with heating temperatures exceeding 700°C and a complete combustion system for syngas

Pyrolysis refers to A thermal decomposition process under low-oxygen conditions, with heating temperatures exceeding 350°C and a complete combustion system for syngas, resulting in the production of biochar, syngas, and other compounds

Soil applications refer to the utilization of biochar in soil, such as land burial for the purpose of improving soil quality

Non-soil applications refer to a utilization of biochar beyond soil applications, such as blending into long lasting products like concrete and asphalt, or burial in designated areas for underground carbon sequestration

9. Note

Details of voluntary emission reductions program for Production and Utilization of Biochar

1. Emission reductions activities used in the calculations

Table 1: Sources and Types of Greenhouse Gases

Greenhouse gas emission	Source	Greenhouse Gas	Details of activities that emit greenhouse gas emissions
Baseline Emission	Biochar	CO ₂	Organic Carbon in Biomass released to the atmosphere owing to combustion
Project Emission	Energy consumption (electricity and fossil fuels)	CO ₂	Use of grid electricity Use of fossil fuels, such as in Biochar production systems, backup generators, biomass loaders, etc.
	Biochar production system	CO ₂ , CH ₄	Leakage of synthetic fuel gas from biochar production systems
	Synthetic fuel gas combustion system	CO ₂	Incompletely combusted synthetic fuel gas
	Utilization of residual biomass	CO ₂ , CH ₄	Transportation of residual biomassTransport of waste biomass
Leakage Emission	Transportation of biochar	CO ₂	Combustion of fossil fuels during the transportation of biochar for utilization
	Sustainable biomass utilization	CO ₂ , CH ₄	 Additional processing of residual biomass diverted from other uses due to project activities Management of residual biomass from project activities Transportation of biomass / residual biomass

2. Scope of Project

The characteristics and scope of a project for converting biomass into biochar with high resistance to decomposition in the environment must comprehensively consider three key aspects

- Biomass sources or biomass collection points, including any pre-treatment steps prior to biochar production (if applicable)
- Biomass conversion process into biochar
- Areas where biochar is applied for use in soil and non-soil materials

3. Additionality

The project must undergo further proof of operation from normal operations. (Additionality) by using the "Proof of Operations Guidelines in addition to normal operations (Additionality) under the Thailand Voluntary Emission Reduction Program (T-VER)" standard equivalent to the international standards prescribed by the TGO.

4. Baseline Scenario

In accordance with the approach for establishing baseline data below Business as Usual (Below BAU), the Business as Usual (BAU) scenario for biochar production through closed combustion systems for beneficial use is defined as the greenhouse gas (carbon dioxide) emissions from biomass combustion being sequestered in the biochar. Therefore, the project's baseline data refers to the carbon dioxide sequestration resulting from biomass combustion in biochar produced via gasification or pyrolysis processes, in which a portion of the sequestered carbon dioxide may be released into the environment depending on the production temperature and over the duration of biochar application.

5. Baseline Emission

Baseline emissions are calculated based on the proportion of organic carbon content and the persistence factor related to the decomposition of biochar, depending on the combustion process and the temperature used. The details are as follows

$$BE_{y} = W_{biochar,y} \times FOC_{y} \times Fperm_{y} \times \underbrace{44}_{12}$$
 Equation (1)

Where

 BE_v = Baseline emissions in year y (tCO₂/year)

W_{biochar,y} = The dry weight of biochar produced from project activities in year y (ton/year)

 FOC_v = The organic carbon content of biochar for each production (%)

Fperm_v = Biochar degradation persistence value from project activities in year y (%)

44/12 = Carbon to carbon dioxide mass conversion factor

6. Project Emission

Project emissions are considered only in terms of carbon dioxide (CO₂) emissions arising from fossil fuel combustion, electricity consumption from the power grid, greenhouse gases contained in synthetic gas (syngas) generated through chemical reactions, the incineration of syngas, and the use of residual biomass. These emissions can be calculated as follows:

$$PE_v = PE_{FE,v} + PE_{EC,v} + PE_{flaring,v} + PE_{Biomass,v}$$
 Equation (2)

Where

 PE_v = Project emissions in year y (tCO₂/year)

 $PE_{FF \nu}$ = Project emissions from fossil fuel combustion in year y (tCO₂/year)

 $PE_{EC,y}$ = Project emissions from electricity consumption sourced from the grid in year y

(tCO₂/year)

PE_{fugitive,y} = Project emissions contained in synthetic gas (syngas) generated through

chemical reactions within the biochar production system in year y (tCO₂/year)

 $PE_{flaring,y}$ = Project emissions from the incineration of synthetic gas (syngas) within the

biochar production system in year y (tCO₂/year)

PE_{Biomass,y} = Project emissions from biomass and biomass residues in year y (tCO₂/year)

6.1 Project emissions from fossil fuel combustion (PE_{FF,y})

Project emissions from fossil fuel combustion due to project activities shall be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: "T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion." If fossil fuels are used to operate equipment related to biomass quality improvement, storage, and transportation of fossil

fuels and biomass such as biomass preparation, conveyor systems, dryers, pelletizing, briquetting, etc. These emissions shall be considered under the parameter PE_{Biomass.v}

6.2 Project emissions from electricity consumption sourced from the grid ($PE_{EC,y}$)

Project emissions from electricity consumption sourced from the grid can be calculated based on the amount of electricity consumed, the emission factor of electricity generation, and transmission and distribution losses in the power grid, as follows

$$PE_{EC,y} = EC_{PJ,y} \times EF_{Elec,y} \times (1 + TDL)$$
 Equation (3)

Where

PE_{EC,y} = Project emissions from electricity consumption sourced from the grid (tCO₂/year)

 $\mathsf{EC}_{\mathsf{PJ},\mathsf{y}}$ = Quantity of grid electricity consumption resulting from project implementation in

year y (MWh/year)

EF_{Elec.y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL = Average technical transmission and distribution losses for providing electricity in year y

Electricity consumed by equipment used for on-site or off-site preparation, storage, processing, and transportation of fossil fuels and biomass such as biomass preparation, conveyor systems, dryers, pelletizing, briquetting, etc. shall also be accounted for under the parameter PE_{FC,v}

6.3 Project emissions contained in synthetic gas (syngas) generated through chemical reactions within the biochar production system ($PE_{fucitive,v}$)

Project emissions contained in syngas generated through chemical reactions within the biochar production system can be calculated as follow

$$PE_{fugitive,y} = \sum_{i} Q_{biochar,i,y} \times SMG_{y} \times f \times GWP_{CH4}$$
 Equation (4)

Where

PE_{fugitive,y} = Project emissions contained in synthetic gas (syngas) generated through chemical reactions within the biochar production system in year y (tCO₂/year)

Q_{biochar.i.v} = Quantity of charcoal type i produced and used in year y (ton/year)

SMG_v = Specific methane generation for biochar generation process in the year y

(tCH₄ /t biochar)

f = A fraction attributed to project biochar production technology

 GWP_{CH4} = Global Warming Potential of Methane (t CO_2e/t CH_4)

6.4 Project emission from the incineration of synthetic gas (syngas) within the biochar production system (PE_{flaring,v})

Project emissions from the combustion of syngas can be calculated using the latest version of the T-VER-P-TOOL-02-04 tool: "Calculation of greenhouse gas emissions from biogas destruction in project operations.

6.5 Project emissions from biomass and biomass residues (PE_{Biomass,v})

In cases where the project activity involves the production of biochar from residual biomass, project emissions shall be calculated using the latest version of the T-VER-P-TOOL-02-02: "Calculation of greenhouse gas emissions from project operations and beyond project boundaries for biomass.

- 1) Transportation of residual biomass
- 2) Processing of residual biomass

7. Leakage Emission

Leakage emission is calculated based on the production of biochar from sustainable biomass or residual biomass, and the transportation of biochar for utilization, with details as follows

$$LE_v = LE_{Biomass,v} + LE_{Biochar,TR}$$
 Equation (5)

Where

LE_v = Leakage emissions in year y (tCO₂/year)

LE_{Biomass.v} = Leakage emissions from biomass and residual biomass in year y (tCO₂/year)

 $LE_{Biochar,TR}$ = Leakage emissions from the transportation of biochar for utilization in year y ($tCO_2/year$)

7.1 Leakage emissions from biomass and residual biomass (LE_{Biomass v})

For the production of biochar from sustainable biomass beyond the leakage emissions, the project developer shall determine greenhouse gas emissions outside the project boundary using the

latest version of T-VER-P-TOOL-02-02: "Calculation of greenhouse gas emissions from project operations and beyond project boundaries for biomass.

- 1) Processing of residual biomass diverted from other uses due to increased demand resulting from project activities
- 2) Management of residual biomass from project activities for disposal or beneficial use
- 3) Transportation of sustainable biomass from the source to the project activity site

7.2 Leakage emissions from the transportation of biochar for utilization (LE_{Biochar,TR})

Leakage emissions from the transportation of biochar for utilization can be calculated as follows:

$$LE_{Biochar,TR} = \sum D_y \times Q_y \times EF_{co2,i} \times 10^{-6}$$
 Equation (6)

Where

LE_{Biochar TR} = Leakage emissions from the transportation of biochar for utilization (tCO₂/year)

 D_{v} Round-trip distance between the origin and destination of biochar transportation

activities for utilization in year y (km)

 Q_{y} Quantity of biochar transported in year y (t biochar)

EF_{CO2,i} Emission factor from the use of fossil fuel type i for transporting biochar for

utilization (gCO₂/tkm)

i Type of fossil fuel

8. Emission Reduction

Emission Reduction can be calculated as follow

$$ER_v = BE_v - PE_v - LE_v$$
 Equation (7)

Where

Emission reductions in year y (tCO₂e/year) ER_v =

 BE_v Baseline emissions in year y (tCO₂e/year)

 PE_v = Project emissions in year y (tCO₂e/year)

LE, = Leakage emissions in year y (tCO₂e/year)

9. Monitoring Plan

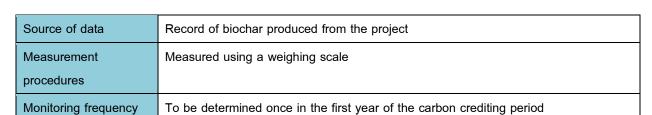
9.1 Monitoring Guidelines

- The project developer shall explain and specify the steps for monitoring the project activity data (Activity data) or verify all measurement results in the project proposal document. including the type of measuring instruments used Person responsible for monitoring results and verifying information Calibration of measuring instruments (if any) and procedures for warranty and quality control Where methods have different options, such as using default values or on-site measurements The project developer must specify which option to use. In addition, the installation, maintenance and calibration of measuring instruments should be carried out in accordance with the instructions of the equipment manufacturer and in accordance with national standards. or international standards such as IEC, ISO and JIS.
- 2) All data collected as part of the greenhouse gas reduction monitoring. The data should be stored in electronic file format and the retention period is in accordance with the guidelines set by the Administrative Organization or the organization's quality system, but the period is not less than that specified by TGO. Data collection must follow the methods specified in the follow-up parameters specified in section 9.2.

9.2 Data and parameters monitored

Parameter	EC _{PJ,y}
unit	MWh/year
Description	Quantity of grid electricity consumption resulting from project implementation in year y
Source of data	Monitoring Report
Measurement	Measured by kWh Meter and continuously monitored throughout the tracking period
procedures	(electricity quantity deducted from self-consumption before being supplied to the grid)
Monitoring frequency	Continuous monitoring is conducted, and data is recorded at least monthly

Parameter	TDL _y
unit	-
Description	Average technical transmission and distribution losses for providing electricity in year y
Source of data	Option 1: Report based on monitoring data in cases where information is available
	on the amount of electricity supplied by the producer and the amount of electricity
	received by the user



	Option 2: Use the most recent value announced by TGO (value = 0.0596), which is
	based on data from the Thailand Energy Balance Report for the year
	2023, by the Department of Alternative Energy Development and
	Efficiency
Measurement	1) If Option 1 is chosen, the project developer must monitor the specified value
procedures	annually throughout the monitoring period of greenhouse gas emission reductions
	2) If Option 2 is chosen, the project developer must use this value consistently
	throughout the monitoring period of greenhouse gas emission reduction
Monitoring frequency	To be determined once in the first year of the carbon crediting period

Parameter	EF _{Elec,y}
unit	tCO ₂ /MWh
Description	Emission factor for electricity generation/consumption in year y
Source of data	Report on greenhouse gas emissions (Emission Factor) from electricity
	generation/consumption for projects and activities of greenhouse gas reduction
	published by TGO.
Measurement	For the preparation of project proposal documents
procedures	Use the latest EF _{Elec,y} announced by TGO
	For monitoring the results of reducing greenhouse gas emissions
	Use the EF _{Elec,y} values announced by TGO according to the year of the carbon
	creditCertification period. However, in the case that the year of the Carbon
	CreditCertification period does not have EF _{Elec,y} values announced by TGO, use the
	latest EF _{Elec,y} values announced by TGO in that year instead.
Monitoring frequency	-

Parameter	W _{biochar,y}
unit	ton/year
Description	The mass of biochar incorporated into mineral soil during the inventory year for each biochar production in year y
Source of data	Record of the dry weight of biochar produced from the project
Measurement procedures	Measured using a weighing scale
Monitoring frequency	To be determined once in the first year of the carbon crediting period

Parameter	Q _{biochar,i,y}
unit	ton/year
Description	Quantity of charcoal type i produced and used in year y

Parameter	Temperature
unit	°C
Description	Temperature in the biochar production system from project implementation
Source of data	Temperature records in the biochar production system from the project
Measurement	Measured by temperature sensors
procedures	
Monitoring frequency	To be determined once in the first year of the carbon crediting period

Parameter	GWP _{CH4}
unit	t CO ₂ e / t CH ₄
Description	Global Warming Potential of Methane
Source of data	Use data from the IPCC Assessment Report prepared by the Intergovernmental
	Panel on Climate Change (IPCC), as announced by TGO
Measurement	For project proposal documentation
procedures	use the latest GWP _{CH4} value as announced by TGO.
	For monitoring Emission reductions
	use the GWP _{CH4} value specified by TGO for estimating emissions during the certified
	crediting period.
Monitoring frequency	_

Parameter	Q _y
unit	t biochar
Description	Quantity of biochar transported in year y
Source of data	Record of transported biochar
Measurement procedures	Measured by a weighing scale
Monitoring frequency	To be determined once in the first year of the carbon crediting period

Parameter	D _y	
unit	km	
Description	Round-trip distance between the origin and destination of biochar transportation activities for utilization in year y	
Source of data	Records from the project	
Measurement procedures	Report on the transportation distance of biochar	
Monitoring frequency	To be determined once in the first year of the carbon crediting period	

Parameter	FOC _y	
unit	%	
Description	The organic carbon content of biochar for each production	
Source of data	Record the proportion of organic carbon in biochar from the project	
Measurement procedures	ocedures Measurement of the proportion of organic carbon in biochar in a certified laboratory	
Monitoring frequency	ng frequency To be determined once in the first year of the carbon crediting period	

9.3 Data and parameters not monitored

Parameter	Fperm _y			
unit	%			
Description	Biochar degradation persistence value from project activities in year y			
Source of data	Appendix 4 in volume 4: Agriculture, Forestry and Other Land Use from 2019			
	Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories			
Applicable value	Applicable value			
	Number	Production Process	Fperm _p	
	1	High temperature pyrolysis and gasification (> 600 °C)	0.89	
	2	Medium temperature pyrolysis (450-600 °C)	0.80	
	3	Low (350-450 °C)	0.65	
		<u> </u>		

Parameter	SMG _y	
unit	tCH₄/t biochar	
Description	Specific methane generation for biochar generation process in the year y	
Source of data	1) Clean Development Mechanism (CDM), AMS-III.BG : Small-scale Methodology	
	Emission reduction through sustainable charcoal production and consumption	
	version 04	
	2) Measure	

Applicable value	0.030 (For Source of Information No. 1)
------------------	---

Parameter	f	
unit	%	
Description	A fraction attributed to project biochar production technology	
Source of data	1) Clean Development Mechanism (CDM), AMS-III.BG : Small-scale Methodology	
	Emission reduction through sustainable charcoal production and consumption	
	version 04	
	2) Measure	
Applicable value	0.1 (For Source of Information No. 1)	

Parameter	EF _{CO2,i}	
unit	gCO ₂ /tkm	
Description	Emission factor from the use of fossil fuel type i for transporting biochar for utilization	
Source of data	Measured from fossil fuel consumption	
	2) Use a constant value	
Applicable value	In the case of selecting data source option 2, use the following values:	
	1) For transportation by small-sized vehicles, use a value of 245 gCO ₂ /tkm	
	2) For transportation by large-sized vehicles, use a value of 129 gCO ₂ /tkm	

10. Reference

- 1) Clean Development Mechanism (CDM), AMS_III.L : Avoidance of methane production from biomass decay through controlled pyrolysis version 02
- 2) Clean Development Mechanism (CDM), AMS-III.BG : Small-scale Methodology Emission reduction through sustainable charcoal production and consumption version 04
 - 3) VCS Methodology: Methodology for biochar utilization in soil and non non-soil applications
- 4) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Appendix 4 Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments: Basis for Future Methodological Development
 - 5) Biochar Methodology for CO₂ Removal Edition 2025 V1
 - 6) Japanese Industrial Standards

https://webdesk.jsa.or.jp/books/W11M0090/index/?bunsyo_id=JIS+M+8812%3A2004

Document information T-VER-P-METH-14-03

Version	Amendment	Entry into force	Description
01	-	24 September 2025	Initial adoption