T-VER-P-METH-14-02

CO₂ Capture for Utilization for Concrete Production

Version 01

Scope: 05 – Chemical industry

Scope: 06 – Construction

Entry into force on 24 September 2025

1. Methodology	CO ₂ Capture and Utilization for Concrete Production		
2. Project Type	Capture, storage, and/or utilization of greenhouse gas		
Scope Project Outline	Scope: 05 – Chemical industry Scope: 06 – Construction The project activity must aim to capture carbon dioxide (CO ₂) either from a defined point source or through Direct Air Capture (DAC) to		
5. Applicability	be utilized in concrete production process. The project activity must include a process for capturing gas from the emission source and separating CO ₂ (Capture), as well as utilizing the CO ₂ (Utilization) in concrete production for permanent CO ₂ storage. The proportion of cement used in the concrete product must not increase compared to the baseline scenario		
6. Project Conditions	utilizing the CO ₂ (Utilization) in concrete production for permanen		

7. Project Starting Date	The date on which the project owner (employer) and the contractor jointly signed the construction or installation agreement for the greenhouse gas reduction project to be developed as a T-VER project.
8. Definition	Concrete refers to a mixture of cement, sand, gravel, and water commonly used in various types of construction work, such as fresh concrete, concrete for road construction, structural concrete, and concrete for bridge building. Cement refers to a binding material used in concrete production, primarily composed of limestone, clay, silica, alumina, and gypsum. During the cement manufacturing process, carbon dioxide is released through a chemical reaction known as calcination. Calcination refers to the process of converting limestone (CaCO ₃), whose primary component is calcium carbonate, into calcium oxide (CaO), during which carbon dioxide (CO ₂) is released as a result of a chemical reaction.
	Carbonation plant refers to the facility or site where concrete mixing processes are carried out to enable carbonation during project implementation.
	Independent Power Supply (IPS) refers to a private power producer that generates electricity for self-consumption without supplying it to the grid or selling it directly to end-users. Direct Mineral Carbonation refers to A chemical reaction occurs between CO ₂ and metal oxides (alkali or alkaline earth metals), such as calcium oxide (CaO) and magnesium oxide (MgO) which are components of cement and water, resulting in the formation of calcium carbonate (CaCO ₃) or magnesium carbonate (MgCO ₃). These compounds are chemically stable minerals capable of permanently storing CO ₂ . Indirect Mineral Carbonation refers to the carbon sequestration process of CO ₂ during concrete production involves two key reactions: first, the interaction between CO ₂ , silica oxide (SiO ₂) in cement, and water; followed by the extraction of calcium from

	calcium silicate hydrate compounds and a direct carbonation
	reaction that leads to the crystallization of calcium carbonate
	(CaCO ₃), enabling permanent CO ₂ storage.
9. Note	

Details of T-VER Methodology for

CO₂ Capture and Utilization for Concrete Production

1. Emission reductions activities used in the calculations

Table 1: Sources and Types of Greenhouse Gases

Greenhouse gas emission	Source	Greenhouse Gas	Details of activities that emit greenhouse gas emissions
Baseline Emission	A defined industrial stack emission	CO ₂	Fossil fuel combustionCalcination of limestone
	Carbon dioxide in the atmosphere	CO ₂	Anthropogenic and natural activities
	Baseline concrete	CO ₂	Mass of carbon contained in baseline concrete
	Baseline emission from cement	CO ₂	Emission from cement production process
Project Emission	Concrete used in project activity	CO ₂	Mass of carbon in concrete during project implementation
	Cement used in project activity	CO ₂	Emission from cement production process
	Carbon capture and separation		
	Leakage	CO ₂	Machinery/Equipment/Pipeline system
	On-site electricity and heat generation for process use	CO ₂	Combustion of fossil fuels in power plants within the project boundary
	■ Use of externally purchased electricity and thermal energy in the process Preparation of CO₂ in liquid form	CO ₂	 Electricity generation by grid- connected power plants Electricity and/or steam generation by IPS-type power plants

 On-site electricity generation for process use 	CO ₂	Combustion of fossil fuels in power plants within the project boundary
■ Electricity consumption (purchased from external sources) in the process	CO ₂	 Electricity generation by grid- connected power plants Electricity and/or steam generation by IPS-type power plants
CO ₂ transportation		
Release or leakage	CO_2	Machinery/Equipment/Pipeline system
■ Use of fossil fuels	CO_2	Fuel combustion from transportation vehicles
■ Electricity consumption (purchased from external sources) in the process	CO ₂	 Electricity generation by grid- connected power plants Electricity and/or steam generation by IPS-type power plants
Preparation of CO ₂ in vapor phase		
■ Use of fossil fuels	CO ₂	Fossil fuel combustion within the project boundary
 On-site electricity generation for process use 	CO ₂	Fossil fuel combustion in power plants within the project boundary
■ Electricity consumption (purchased from external sources) in the process	CO ₂	 Electricity generation by grid- connected power plants Electricity and/or steam generation by IPS-type power plants
Utilization of CO ₂ in concrete produc	tion_	
Release or leakage	CO_2	Machinery/Equipment/Pipeline system
■ Use of fossil fuels	CO ₂	Fossil fuel combustion within the project boundary

	On-site electricity generation for use in the process	CO ₂	Combustion of fossil fuels in power plants within the project boundary
	Electricity consumption (purchased from external sources) in the process	CO ₂	 Electricity generation by grid- connected power plants Electricity generation by IPS- type power plants
	Use of solvents in the CO ₂ utilization process	CO ₂	Solvent production process
Leakage	Transportation of gravel, sand, water	r, and cement	
Emission	■ Use of fossil fuels	CO ₂	Fuel combustion from vehicles used for transportation
	Electricity consumption (purchased from external sources) in the process	CO ₂	 Electricity generation by grid- connected power plants Electricity generation by IPS- type power plants

2. Scope of Project

The project activity must aim to capture carbon dioxide either from a point-source emission or directly from the atmosphere, and store within concrete products.

- Carbon storage in concrete must ensure that the performance characteristics of the resulting concrete, when used in various applications, are equivalent to those of baseline concrete or meet the relevant standards for that specific type of concrete.
- The transportation of cement, aggregates (gravel and sand), and water from outside the project boundary refers to the transport of materials used for the production of concrete that exceeds the baseline production volume.

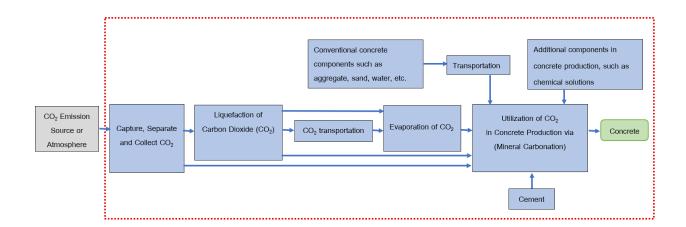


Figure 1: Carbon Dioxide Capture and Storage Process in Concrete Production

The project activity consists of five distinct components, as illustrated in Figure 1

- CO₂ capture and separation from point sources can be carried out at various stages, as outlined below
 - O Pre-combustion
 - Post-combustion
 - O Oxy-fuel combustion
 - O Direct Air Capture

Examples of Technologies Used for CO, Capture

- Adsorption
- Absorption
- O Membrane separation
- Cryogenic distillation
- Chemical Looping
- CO₂ Preparation (Liquefaction): Converting CO₂ into its liquid state to optimize transportation efficiency
- Transportation The separated CO₂ can be transported to the designated area for utilization in concrete production through various modes of transportation, including
 - O Pipeline
 - O Land transportation

In cases where the CO_2 capture and separation process (Capture) and the CO_2 collection (Collection) occur at the same location as the carbonation plant, allowing direct CO_2 feed into concrete production, greenhouse gas emissions from transportation activities shall not be considered or shall be deemed zero.

- CO₂ Evaporation: Converting CO₂ into its gaseous state to optimize its suitability as a feedstock for mineral carbonation in the carbonation plant
- Utilization of CO₂ within the carbonation plant occurs through the mineral carbonation process to produce various types of concrete, such as fresh concrete, pavement concrete, structural concrete (architectural concrete), and bridge concrete. This process constitutes the storage of CO₂ within the concrete, whereby CO₂ is chemically transformed into calcium carbonate (CaCO₃), becoming an integral part of the concrete matrix.

$$Ca(OH)_2 + CO_2 \iff CaCO_3 + H_2O$$

The project activity may not include CO₂ liquefaction, CO₂ transportation, or CO₂ evaporation processes as illustrated in Figure 1, depending on the actual implementation of the project.

3. Additionality

The project must undergo further proof of operation from normal operations. (Additionality) using the "Proof of Operations Guidelines in addition to normal operations (Additionality) under the Thailand Voluntary Emission Reduction Program (T-VER)" standard equivalent to the international standards prescribed by the TGO.

4. Baseline Scenario

The project activity involving carbon dioxide capture for utilization in concrete production represents the first of its kind in Thailand. Therefore, the baseline information refers to the amount of CO₂ that is utilized and subsequently stored within the concrete during the production process

Note: If Thailand sees an increase in CCU projects for concrete production, TGO (Thailand Greenhouse Gas Management Organization) will consider revising the baseline data in accordance with the 'Below Business as Usual (Below BAU) approach

If the utilization of CO₂ in concrete production results in a reduction in cement consumption, Below Business as Usual (Below BAU) baseline approach may be applied. In such cases, the baseline concrete production shall be considered to use hydraulic cement with a greenhouse gas emission factor of 871 kgCO₂ per ton of cement.

5. Baseline Emission

Baseline emission is considered only from carbon dioxide (CO₂) from a specific designated source. The calculation is based on the amount of carbon in concrete that increases under conventional operations, combined with the use of cement, which releases CO₂ during its production process.

Baseline emission can be calculated as followed:

$$BE_{v} = \sum_{n} (BE_{co2,Store,n,v}) + BE_{Cement,v}$$
 Equation (1)

Where

 BE_v = Baseline emissions in year y (tCO₂e/year)

BE_{CO2,Store,n,y} = Quantity of carbon dioxide calculated based on the difference between the amount of carbon stored in concrete type n under project implementation and that in the baseline case in year y (tCO₂/year)

BE_{Cement,y} = Baseline emissions from concrete production based on the amount of hydraulic cement used in year y (tCO₂/year)

5.1 Quantity of carbon dioxide calculated based on the difference between the amount of carbon stored in concrete under project implementation and that in the baseline case (BE_{CO2,Store,n,y})

Quantity of carbon dioxide calculated based on the difference between the amount of carbon stored in concrete under project implementation and that in the baseline case may be calculated using one of the following three approaches.

Option 1: Direct Measurement of Carbon Content in Baseline Concrete

The amount of carbon dioxide sequestered in baseline concrete may be calculated based on the measured carbon content in concrete samples combined with total concrete production data. The calculation may be performed using the following equation.

$$BE_{CO2,Store,n,y} = \sum_{i} \left[Q_{Concrete,PJ,i,y} \times ((Q_{C,PJ,Test,i} - Q_{C,BL,Test,i}) \times 10^{6} \times \frac{44}{12}) \right]$$
 Equation (2)

BE_{CO2,Store,i,y} = Quantity of carbon dioxide calculated based on the difference between the amount of carbon stored in concrete type i under project implementation and that in the baseline case in year y (tCO₂/year)
 Q_{Concrete,PJ,i,y} = Quantity of concrete type i produced by the project activity in year y (t concrete/year)
 Q_{C,PJ,Test,i,y} = Average carbon (C) content in samples of concrete type i from the project activity in year y (gram of C/gram of tested concrete)

Q_{C,BL,Test,i} = Average carbon (C) content in samples of concrete type i from the baseline case (gram of C/gram of tested concrete)

i = Type of concrete

Option 2: Assessment via Measured Volume of CO₂ Supplied to the Carbonation Plant

The amount of carbon dioxide sequestered in baseline concrete may be calculated based on the measured volume of CO₂ gas entering the carbonation plant and the residual volume of CO₂ remaining within the system. The residual CO₂ may be considered as project emissions in cases where the carbonation process operates under a closed system. Alternatively, it may be excluded from the calculation if the CO₂ is sourced from ambient air or would otherwise have been released under normal conditions. The assessment shall be conducted per concrete production batch, with energy consumption during the process maintained at a constant level.

The amount of carbon dioxide sequestered in baseline concrete may be calculated as followed. The carbonation process must operate under a closed system, with no leakage of gas during the reaction phase.

$$BE_{CO2,Store,i,y} = \sum_{b} (Q_{CO2,PJ,Feed,i,b,y} - Q_{CO2,PJ,Non-Store,i,b,y})$$
 Equation (3)

Where

BE_{CO2,Store,i,y} = Quantity of carbon dioxide calculated based on the difference between the amount of carbon stored in concrete type i under project implementation and that in the baseline case in year y (tCO₂/year)

Q_{CO2,PJ,Feed,i,b,y} = Amount of CO₂ used for injection into the carbonation plant for producing concrete type i in production batch b under the project activity in year y (tCO₂/year)

Q_{CO2,PJ,Non-Store,i,b,y} = Amount of residual CO₂ remaining in the carbonation plant (not stored in concrete) for concrete type i in production batch b under the project activity in year y (tCO₂/year)

i = Type of concrete
b = Concrete production batch

The amount of CO_2 gas injected into the carbonation plant per concrete production cycle (b) may be calculated based on the gas density, the proportion of CO_2 in the gas mixture, and the total volume of gas supplied to the carbonation plant. The calculation may be performed using the following equation.

$$Q_{\text{CO2.PJ.Feed.i.b.v}} = \sum_{\text{t.b}} \left[\rho_{\text{CO2.b}} \times (\% \text{V/V}_{\text{CO2.Feed.i.b.v}}) \times \text{V}_{\text{Feed.b}} \times 10^3 \right]$$
 Equation (4)

Where

Q_{CO2,PJ,Feed,i,b,y} = Amount of CO₂ used for injection into the carbonation plant for producing concrete type i in production batch b under the project activity in year y (tCO₂/year)

 $\rho_{\text{CO2,b}}$ = Density of CO₂ under operating conditions in concrete production batch b (kg/m³)

%V/V_{CO2,Feed,i,b,y} = Volumetric proportion of CO₂ to total gas volume at the injection point of the carbonation plant, measured during concrete production batch b under operational conditions in year y (%)

V_{Feed,b} = Volume of CO₂ injected into the carbonation plant during concrete production batch b (m³)

i = Type of concrete

b = Concrete production batch

The amount of CO_2 gas not sequestered as carbonate in concrete may be calculated based on the free volume, pressure, and temperature within the reaction chamber, combined with the CO_2 concentration and gas density. This assessment shall be conducted per concrete production cycle (b), using the following equation.

 $Q_{CO2,PJ,Non-Store,i,b,y} = \sum_{b} \left(\frac{P_{After,b} V_{Chamber,b}}{R T_{After,b}} - \frac{P_{Before,b} V_{Chamber,b}}{R T_{Before,b}} \right) \times (\%V/V_{CO2,Feed,i,b,y}) \times 44.01 \times 10^{-6}$

T_{Before,b} = Temperature within the chamber prior to operation during concrete production batch b (K), before CO₂ is injected into the chamber

carbonation reaction in the chamber

Temperature within the chamber after operation during concrete

production batch b (K), following completion of the mineral

%V/V_{CO2,Feed,i,b,y} = Volumetric ratio of CO₂ to total gas volume at the injection point of the carbonation plant, measured during concrete production batch b under operational conditions in year y (%)

i = Type of concrete

T_{After.b}

b = Concrete production batch

Option 3: Assessment Using System Efficiency Estimates

The amount of carbon dioxide sequestered in baseline concrete may be calculated using an estimated system efficiency value of 0.6, based on a conservative approach of experimental results published by Monkman, S. (2018)

In this case, the amount of carbon dioxide sequestered in baseline concrete may be calculated using the following equation.

$$BE_{CO2.Store.n.v} = \sum_{b} (Q_{CO2.PJ.Feed.i.b.v} \times 0.6)$$
 Equation (6)

BE_{CO2,Store,i,y} = Quantity of carbon dioxide calculated based on the difference between the amount of carbon stored in concrete type i under project implementation and that in the baseline case in year y (tCO₂/year)

Q_{CO2,PJ,Feed,i,b,y} = Amount of CO₂ used for injection into the carbonation plant for producing concrete type i in production batch b under the project activity in year y (tCO₂/year)

Amount of carbon dioxide transformed into mineral forms in concrete based on the conservative calculation approach, as referenced from the principle of conservative estimation for mineralization potential during concrete production referred from the academic publication by Monkman,
 S. (2018)^[6].

n = Type of concrete

b = Concrete production batch

5.2 Baseline emissions from concrete production based on the amount of hydraulic cement used (BE_{Cement})

Baseline emissions from concrete production based on the amount of hydraulic cement used can be calculated as followed:

$$BE_{Cement,y} = \sum_{i} Q_{Cement,BL,i,y} \times EF_{HC}$$
 Equation (7)

Where

BE_{Cement,y} = Baseline emissions from concrete production based on the amount of hydraulic cement used in year y (tCO₂/year)

Q_{Cement,BL,i,y} = Quantity of hydraulic cement used in the production of concrete type i from the baseline case in year y (t cement)

 $\mathsf{EF}_{\mathsf{HC}}$ = Emission factor from hydraulic cement production (tCO₂/t cement)

i = Type of concrete

5.2.1 Quantity of hydraulic cement used in the production of concrete from the baseline case $(Q_{Cement,Bl.i.v})$

Quantity of hydraulic cement used in the production of concrete from the baseline case shall be assessed by comparing the quantity of hydraulic cement contained in baseline concrete sample type i with that in the corresponding project concrete sample

The amount of cement used in baseline concrete production may be calculated as followed:

$$\mathbf{Q}_{\text{Cement,BL,i,y}} = \sum_{i} \left(\mathbf{Q}_{\text{Cement,PJ,i,y}} \times \left(\frac{\mathbf{Q}_{\text{Cement,BL,Test,i}}}{\mathbf{Q}_{\text{Cement,PJ,Test,i}}} \right) \right)$$
Equation (8)

Where

Q_{Cement,BL,i,y} = Quantity of hydraulic cement used in the production of concrete type i from the baseline case in year y (t cement)

Q_{Cement,PJ,i,y} = The quantity of cement used in the production of concrete type i in year y (t cement)

Q_{Cement,BL,Test,i} = Quantity of hydraulic cement utilized in the preparation of concrete type i samples under the baseline scenario (gram of cement)

Q_{Cement,PJ,Test,i} = Quantity of hydraulic cement utilized in the preparation of concrete type i samples under the project activity (gram of cement)

i = Type of concrete

6. Project Emission

Project emission from the project activity is considered based on seven key components of the project operations, namely: Cement consumption during project implementation CO_2 capture process CO_2 separation and collection process CO_2 transportation process CO_2 liquefaction process CO_2 evaporation process and Mineral carbonation process. Additionally, the acquisition of solvents used to accelerate the mineral carbonation reaction is also considered. Only components that are implemented within the project scope shall be considered.

Project emission can be calculated as followed:

$$PE_{y} = PE_{Cement,y} + PE_{Capt,y} + PE_{Liq,y} + PE_{Trans,y} + PE_{Evap,y} + PE_{MineralC,y} + PE_{Solvent,y}$$
 Equation (9)

 PE_v = Project emissions in year y (tCO₂e/year)

PE_{Cement,y} = Project emissions from concrete production based on the amount of

hydraulic cement used in year y (tCO₂/year)

PE_{Capt.v} = Project emissions from CO₂ capture, separation, and collection processes in

year y (tCO₂/year)

PE_{Lig,y} = Project emissions from liquefying CO₂ in year y (tCO₂/year)

PE_{Trans,y} = Project emissions from the CO₂ transportation process in year y (tCO₂/year)

PE_{Evap,y} = Project emissions from the vaporization of CO₂ in year y (tCO₂/year)

PE_{MineralC,y} = Project emissions from conditioning the chamber (carbonation plant) to

achieve suitable temperature and pressure for mineral carbonation in year y

(tCO₂/year)

PE_{Solvent,y} = Project emissions from the use of concrete admixture in year y (tCO₂/year)

6.1 Project emissions from concrete production based on the amount of hydraulic cement used (PE_{Cement.v})

Project emissions from concrete production based on the amount of hydraulic cement used can be calculated as followed:

$$PE_{Cement,y} = \sum_{i} (Q_{Cement,PJ,j,y} \times EF_{Cement,j})$$
 Equation (10)

Where

PE_{Cement,y} = Project emissions from concrete production based on the amount of hydraulic

cement used in year y (tCO₂/year)

Q_{Cement.PJ.i.v} = Quantity of cement type j used for concrete production under the project

activity in year y (t cement)

EF_{Cement.i} = Emission factor of cement type j under the project activity (tCO₂/t cement)

i = Type of concrete

6.2 Project emissions from CO2 capture, separation, and collection processes ($PE_{Capt,y}$)

Project emissions from CO₂ capture, separation, and collection processes can be calculated as followed:

$$PE_{Capt,V} = PE_{Capt,FF,V} + PE_{Capt,Elec,V} + PE_{Capt,IPS,V}$$
 Equation (11)

PE_{Capt,y} = Project emissions from CO₂ capture, separation, and collection processes in year y (tCO₂/year)

PE_{Capt,FF,y} = Project emissions from fossil fuel combustion during the capture, separation, and collection of CO₂ in year y (tCO₂/year)

PE_{Capt,Elec,y} = Project emissions from electricity consumption from the grid during the capture, separation of CO₂ from other gases, and collection processes in year y (tCO₂/year)

PE_{Capt,IPS,y} = Project emissions from the use of electricity and/or steam supplied by IPStype power plants for the CO₂ capture, separation from other gases, and collection processes in year y (tCO₂e/year)

6.2.1 Project emissions from fossil fuel combustion during the capture, separation, and collection of CO₂ (PE_{Capt,FF,v})

Project emissions from fossil fuel combustion during the capture, separation, and collection of CO₂ such as heat generation for the regeneration of absorbents or adsorbents, and electricity and heat generation for CO₂ capture, separation, and collection (excluding externally purchased energy) shall be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion

6.2.2 Project emissions from electricity consumption from the grid during the capture, separation of CO₂ from other gases, and collection processes (PE_{Capt,Elec,y})

Project emissions from electricity consumption from the grid during the capture, separation of CO₂ from other gases, and collection processes can be calculated based on the amount of electricity consumed, the emission factor associated with electricity generation/use, and the proportion of transmission and distribution losses in the grid, as expressed in the following equation.

$$PE_{Capt,Elec,y} = EC_{Capt,PJ,y} \times EF_{Elec,y} \times (1 + TDL_y) \times 10^{-3}$$
 Equation (12)

Where

PE_{Capt,Elec,y} = Project emissions from electricity consumption from the grid during the capture, separation of CO₂ from other gases, and collection processes in year y (tCO₂e/year)

EC_{Capt,PJ,y} = Electricity consumption for the capture, separation of CO₂ from other gases, and collection processes in year y (kWh/year)

 $\mathsf{EF}_{\mathsf{Elec},\mathsf{y}}$ = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL_y = Average technical transmission and distribution losses for providing electricity in year y (%)

6.2.3 Project emissions from the use of electricity and/or steam supplied by IPStype power plants for the CO₂ capture, separation from other gases, and collection processes (PE_{Capt,IPS,v})

Project emissions from the use of electricity and/or steam supplied by IPS-type power plants for the CO₂ capture, separation from other gases, and collection processes shall be assessed based on fossil fuel combustion using an allocation approach. The resulting energy-related emissions shall then be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion.

$$FC_{Capt,IPS,y} = \left(1/\eta_{IPS,y}\right) \times TFC_{IPS,y} \times \left[\frac{\left(HC_{Capt,PJ,y} + (3.6 \times EC_{Capt,PJ,y})\right)}{\left(HG_{IPS,y} + (3.6 \times EG_{IPS,y})\right)}\right] \qquad \text{Equation (13)}$$

Where

FC_{Capt,IPS,y} = Fossil fuel consumption for purchased electricity and/or heat generation used in the CO₂ capture, separation from other gases, and collection processes in year y (Unit/year)

TFC_{IPS,y} = Total fossil fuel consumption by the power plant(s) supplying electricity and/or steam for use in year y (Unit/year)

HC_{Capt,PJ,y} = Heat consumption for the CO₂ capture, separation from other gases, and collection processes in year y (MJ/year)

HG_{IPS,y} = Total heat output generated by power plant(s) supplying electricity and/or steam used in year y (MJ/year)

EG_{IPS,y} = Total electricity output generated by power plant(s) supplying electricity and/or steam used in year y (kWh/year)

 $\eta_{\text{IPS},y}$ = Average annual efficiency of the power plant in year y (value between 0 and 1)

6.3 Project emissions from liquefying CO₂ (PE_{Liq,y})

Project emissions from liquefying CO₂ can be calculated as followed:

$$PE_{Liq,y} = PE_{Liq,Elec,y} + PE_{Liq,IPS,y}$$
 Equation (14)

PE_{Lia,v} = Project emissions from liquefying CO₂ in year y (tCO₂/year)

PE_{Liq,Elec,y} = Project emissions from grid electricity consumption during the liquefaction process of CO₂ in year y (tCO₂/year)

PE_{Liq,IPS,y} = Project emissions from the use of electricity and/or steam from IPS-type power plants for CO₂ liquefaction processes in year y (tCO₂/year)

6.3.1 Project emissions from grid electricity consumption during the liquefaction process of CO₂ (PE_{Lig.Elec.v})

Project emissions from grid electricity consumption during the liquefaction process of CO₂ can be calculated based on the amount of electricity consumed, the emission factor associated with electricity generation/use, and the proportion of transmission and distribution losses in the grid, as expressed in the following equation.

$$PE_{Lig,Elec,v} = EC_{Lig,PJ,v} \times EF_{Elec,v} \times (1 + TDL_v) \times 10^{-3}$$
 Equation (15)

Where

PE_{Liq,Elec,y} = Project emissions from grid electricity consumption during the liquefaction process of CO₂ in year y (tCO₂e/year)

 $EC_{Liq,PJ,y}$ = Electricity consumption for the CO_2 liquefaction process in year y (kWh/year)

EF_{Elec.y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL_y = Average technical transmission and distribution losses for providing electricity in year y (%)

6.3.2 Project emissions from the use of electricity and/or steam from IPS-type power plants for CO₂ liquefaction processes (PE_{Liq,IPS,y})

Project emissions from the use of electricity and/or steam from IPS-type power plants for CO_2 liquefaction processes shall be assessed based on fossil fuel combustion using an allocation approach. The resulting emissions shall then be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO_2 Emissions from Fossil Fuel Combustion.

$$FC_{\text{Liq,IPS,y}} = \left(1/\eta_{\text{IPS,y}}\right) \times TFC_{\text{IPS,y}} \times \left[\frac{\left(3.6 \times EC_{\text{Liq,PJ,y}}\right)}{\left(HG_{\text{IPS,y}} + \left(3.6 \times EG_{\text{IPS,y}}\right)\right)}\right]$$
Equation (16)

FC_{Liq,IPS,y} = Fossil fuel consumption for electricity generation associated with purchased electricity used in the CO₂ liquefaction process in year y (Unit/year)

TFC_{IPS,y} = Total fossil fuel consumption by the power plant(s) supplying electricity and/or steam for use in year y (Unit/year)

HG_{IPS,y} = Total heat output generated by power plant(s) supplying electricity and/or steam used in year y (MJ/year)

EG_{IPS,y} = Total electricity output generated by power plant(s) supplying electricity and/or steam used in year y (kWh/year)

 $\eta_{\text{IPS},y}$ = Average annual efficiency of the power plant in year y (value between 0 and 1)

6.4 Project emissions from the CO₂ transportation process (PE_{Trans.v})

Project emissions from the transportation of CO₂ captured, separated, and collected from other gases to the utilization site for mineral carbonation in concrete under the project activity can be calculated as followed:

$$PE_{Trans,FE,v} = PE_{Trans,FE,v} + PE_{Trans,Elec,v} + PE_{Trans,IPS,v}$$
 Equation (17)

Where

PE_{Trans,y} = Project emissions from the CO₂ transportation process in year y
(t CO₂/year), whereby if the location of CO₂ capture, separation and
collection activities and the carbonation plant are within the same area,
PE_{Trans,y} = 0

PE_{Trans,FF,y} = Project emissions from the combustion of fossil fuels in machinery, equipment, or vehicles used for CO₂ transportation in year *y* (tCO₂/year)

PE_{Trans,Elec,y} = Project emissions from grid electricity consumption for CO₂ transportation via pipeline in year y (tCO₂/year)

PE_{Trans,IPS,y} = Project emissions from electricity and/or steam consumption supplied by an IPS-type power plant for CO₂ pipeline transportation in year y (tCO₂/year)

6.4.1 Project emissions from the combustion of fossil fuels in machinery, equipment, or vehicles used for CO₂ transportation (PE_{Trans.FF.v})

Project emissions from fossil fuel combustion in vehicles used for transporting CO₂ captured, separated, and collected from other gases to the utilization site for mineral carbonation in concrete under the project activity shall be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion

6.4.2 Project emissions from electricity and/or steam consumption supplied by an IPS-type power plant for CO₂ pipeline transportation (PE_{Trans,Elec.y})

Project emissions from electricity and/or steam consumption supplied by an IPS-type power plant for CO₂ pipeline transportation can be calculated as followed:

$$PE_{Trans,Elec,y} = EC_{Trans,PJ,y} \times EF_{Elec,y} \times (1 + TDL_y) \times 10^{-3}$$
 Equation (18)

Where

 $PE_{Trans,Elec,y}$ = Project emissions from grid electricity consumption for CO_2

transportation via pipeline under project operations in year y

(tCO₂e/year)

 $EC_{Trans,PJ,y}$ = Electricity consumption for CO_2 transportation under project operations

in year y (kWh/year)

EF_{Elec.v} = Emission factor for electricity generation/consumption in year y

(tCO₂/MWh)

TDL_v = Average technical transmission and distribution losses for providing

electricity in year y (%)

6.4.3. Project emissions from electricity and/or steam consumption supplied by an IPS-type power plant for CO₂ pipeline transportation (PE_{Trans,IPS,y})

Project emissions from electricity and/or steam consumption supplied by an IPS-type power plant for CO₂ pipeline transportation shall be assessed based on fossil fuel combustion using an allocation approach. The resulting emissions shall then be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion.

$$FC_{Trans,IPS,y} = (1/\eta_{IPS,y}) \times TFC_{IPS,y} \times \left[\frac{(3.6 \times EC_{Trans,PJ,y})}{(HG_{IPS,y} + 3.6 \times EG_{IPS,y})} \right]$$
 Equation (19)

FC_{Trans,IPS,y} = Fossil fuel consumption for electricity generation associated with purchased electricity used in the CO₂ transportation process in year y (Unit/year)

TFC_{IPS,y} = Total fossil fuel consumption by the power plant(s) supplying electricity and/or steam for use in year y (Unit/year)

HG_{IPS,y} = Total heat output generated by power plant(s) supplying electricity and/or steam used in year y (MJ/year)

 $EG_{IPS,y}$ = Total electricity output generated by power plant(s) supplying electricity and/or steam used in year y (kWh/year)

 $\eta_{\text{IPS,y}}$ = Average annual efficiency of the power plant in year y (value between 0 and 1)

6.5 Project emissions from the vaporization of CO₂ (PE_{Evap.y})

Project emissions from the vaporization of CO₂ can be calculated as followed:

$$PE_{Evap,y} = PE_{Evap,Elec,y} + PE_{Evap,IPS,y}$$
 Equation (20)

Where

PE_{Evap,v} = Project emissions from the vaporization of CO₂ in year y (tCO₂e/year)

PE_{Evap,Elec,y} = Project emissions from grid electricity consumption in the CO₂ vapor-phase preparation process in year y (tCO₂e/year)

PE_{Evap,IPS,y} = Project emissions from the use of electricity and/or steam supplied by IPS-type power plants for CO₂ vapor-phase preparation processes in year y (tCO₂e/year)

6.5.1 Project emissions from grid electricity consumption in the CO₂ vapor-phase preparation process (PE_{Evap,Elec.v})

Project emissions from grid electricity consumption in the CO₂ vapor-phase preparation process can be calculated based on the amount of electricity consumed, the emission factor associated with electricity generation/use, and the proportion of transmission and distribution losses in the grid, as expressed in the following equation.

$$PE_{Evap,Elec,v} = EC_{Evap,PJ,v} \times EF_{Elec,v} \times (1 + TDL_v) \times 10^{-3}$$
 Equation (21)

 $EC_{Evap,PJ,y}$ = Electricity consumption for the preparation of CO_2 in vapor phase under project operations in year y (kWh/year)

EF_{Elec,y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL_y = Average technical transmission and distribution losses for providing electricity in year y (%)

6.5.2 Project emissions from the use of electricity and/or steam supplied by IPStype power plants for CO₂ vapor-phase preparation processes (PE_{Evap,IPS,y})

Project emissions from the use of electricity and/or steam supplied by IPS-type power plants for CO2 vapor-phase preparation processes shall be assessed based on fossil fuel combustion using an allocation approach. The resulting emissions shall then be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion.

$$FC_{\text{EV,IPS,y}} = \left(1/\eta_{\text{IPS,y}}\right) \times TFC_{\text{IPS,y}} \times \left[\frac{\left(HC_{Evap,PJ,y} + (3.6 \times EC_{Evap,PJ,y})\right)}{\left(HG_{IPS,y} + (3.6 \times EG_{IPS,y})\right)}\right] \qquad \text{Equation (22)}$$

Where

FC_{Evap,IPS,y} = Fossil fuel consumption for electricity and/or heat generation associated with purchased energy used in the CO₂ vapor-phase preparation process under project operations in year y (Unit/year)

TFC_{IPS,y} = Total fossil fuel consumption by the power plant(s) supplying electricity and/or steam for use in year y (Unit/year)

 $HC_{Evap,PJ,y}$ = Heat consumption for the preparation of CO_2 in vapor phase in year y (MJ/year)

HG_{IPS,y} = Total heat output generated by power plant(s) supplying electricity and/or steam used in year y (MJ/year)

EG_{IPS,y} = Total electricity output generated by power plant(s) supplying electricity and/or steam used in year *y* (kWh/year)

 $\eta_{\text{IPS},y}$ = Average annual efficiency of the power plant in year y (value between 0 and 1)

6.6 Project emissions from conditioning the chamber (carbonation plant) to achieve suitable temperature and pressure for mineral carbonation (PE_{MineralC.v})

Project emissions from conditioning the chamber (carbonation plant) to achieve suitable temperature and pressure for mineral carbonation can be calculated as followed:

$$PE_{MineralC, v} = PE_{MineralC, Flec, v} + PE_{MineralC, IPS, v}$$
 Equation (23)

Where

PE_{MineralC,y} = Project emissions from conditioning the chamber (carbonation plant) to achieve suitable temperature and pressure for mineral carbonation in year y (tCO₂e/year)

PE_{MineralC,Elec,y} = Project emissions from electricity consumption from the power grid in the mineral carbonation production process in year y (tCO₂e/year)

PE_{MineralC,IPS,y} = Project emissions from the use of electricity and/or steam supplied by an IPS-type power plant in the mineral carbonation production process in year y (tCO₂e/year)

6.6.1 Project emissions from electricity consumption from the power grid in the mineral carbonation production process (PE_{MineralC.Flec.v})

Project emissions from electricity consumption from the power grid in the mineral carbonation production process can be calculated based on the amount of electricity consumed, the emission factor associated with electricity generation/use, and the proportion of transmission and distribution losses in the grid, as expressed in the following equation.

$$PE_{MineralC,Elec,y} = EC_{MineralC,PJ,y} \times EF_{Elec,y} \times (1 + TDL_y) \times 10^{-3}$$
 Equation (24)

Where

PE_{MineralC,Elec,y} = Project emissions from electricity consumption from the power grid in the mineral carbonation production process in year y (tCO₂e/year)

EC_{MineralC,PJ,y} = Electricity consumption in the mineral carbonation production process in year y (kWh/year)

EF_{Elec,y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL_y = Average technical transmission and distribution losses for providing electricity in year y (%)

6.6.2 Project emissions from the use of electricity and/or steam supplied by an IPStype power plant in the mineral carbonation production process (PE_{MineralC IPS v})

Project emissions from the use of electricity and/or steam supplied by an IPS-type power plant in the mineral carbonation production process shall be assessed based on fossil fuel combustion using an allocation approach. The resulting emissions shall then be calculated using the latest version of the calculation tool T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion.

$$FC_{MineralC,IPS,y} = (1/\eta_{IPS,y}) \times TFC_{IPS,y} \times \left[\frac{(3.6 \times EC_{MineralC,PJ,y})}{(HG_{IPS,y} + (3.6 \times EG_{IPS,y}))} \right]$$
 Equation (25)

Where

 $FC_{MineralC,IPS,y}$ = Fossil fuel consumption for electricity generation in the purchased

portion used in the mineral carbonation production process in year y

(Unit/year)

 $TFC_{IPS,v}$ = Total fossil fuel consumption by the power plant(s) supplying

electricity and/or steam for use in year y (Unit/year)

 $HG_{IPS,y}$ = Total heat output generated by power plant(s) supplying electricity

and/or steam used in year y (MJ/year)

 $EG_{IPS v}$ = Total electricity output generated by power plant(s) supplying

electricity and/or steam used in year y (kWh/year)

 $\eta_{\text{IPS,y}}$ = Average annual efficiency of the power plant in year y

(value between 0 and 1)

6.7 Project emissions from the use of concrete admixture (PE_{Solvent,v})

Project emissions from the use of concrete admixture can be calculated as followed:

$$PE_{Solvent,y} = \sum_{s} (Q_{C,Solvent,PJ,s,y} \times \frac{44}{12}) + \sum_{s} ((FC_{Solvent,s,y} \times EF_{Solvent,s,y}))$$
 Equation (26)

Where

PE_{Sovent.y} = Project emissions from the use of concrete admixture in year y

(tCO₂e/year)

 $Q_{C.Solvent.PJ.s,v}$ = Carbon (C) content in solution type s for concrete mixing in year y

(ton of C)

 $FC_{Solvent,s,v}$ = Consumption of solvent type s in year y (ton of solvent/year)

 $\mathsf{EF}_{\mathsf{Solvent},\mathsf{s},\mathsf{v}}$ = Emission factor of solvent type s (tCO₂e/ton of Solvent)

s = Type of solvent

6.7.1 Carbon (C) content in solution type s for concrete mixing (Q_{C Solvent P.I.s.v})

Carbon (C) content in solution type s for concrete mixing can be calculated as followed:

$$Q_{c,Solvent,PJ,s,y} = Q_{Solvent,PJ,s,y} \times \frac{Molar\ mass\ of\ C\ in\ solvent_S}{Total\ molar\ mass\ of\ solvent_S}) \times \rho_{Solvent,S}$$
 Equation (27)

Where

 $Q_{C,Solvent,PJ,s,y}$ = Carbon (C) content in solution type s for concrete

mixing in year y (ton of C)

 $Q_{Solvent.PJ.s.v}$ = Volume of solution type s for concrete mixing from

project implementation in year y (m³)

Molar mass of C in solvent_s = Mass of carbon in 1 mole (mol) of solution type s

(grams)

Total molar mass of solvent_s = Mass of 1 mole of solution type s (grams)

 $\rho_{Solvent,S}$ = Density of solution type s (kg/Liter, kg/dm³)

6.7.2 Emission factor of solvent (EF_{SOLVENT.s.v})

The emission factor for solvent types may be referenced from the following data sources.

Option 1: Emission Factor Based on Chemical Properties

- O In cases where the chemical is not listed in available databases, the emission factor may be determined using a conservative approach. This involves applying the highest emission factor among chemicals within the same group, based on data from the Carbon Footprint of Products (CFP) published by the Thailand Greenhouse Gas Management Organization (TGO).
- O In cases where the chemical is not listed within the same chemical group, the emission factor may be referenced using the calculation method outlined in the Carbon Footprint of Products (CFP) assessment guidelines established by the Thailand Greenhouse Gas Management Organization (TGO).

Option 2: Emission Factor from Online Databases suchas https://carboncloud.com/

Option 3: The emission factor may be obtained from calculation software tools such as SimaPro

7. Leakage Emission

Leakage emission shall be considered from the transportation of concrete mix materials used in the additional concrete production beyond the baseline scenario. These emissions may be calculated as followed:

$$LE_v = LE_{Trans,OB,FE,v} + LE_{Trans,OB,Elec,v} + LE_{Trans,OB,IPS,v}$$
 Equation (28)

Where

 LE_v = Leakage emission in year y (tCO₂e/year)

LE_{Trans,OB,FF,y} = Leakage emission from fossil fuel consumption for transporting concrete mix materials used in the production of concrete exceeding the baseline production level in year y (tCO₂e/year)

LE_{Trans,OB,Elec,y} = Leakage emission from the use of electricity from the power grid for transporting concrete mix materials used in additional concrete production beyond the baseline level in year y (tCO₂e/year)

 $\begin{tabular}{lll} $\sf LE_{\sf Trans,OB,IPS,y}$ &=& Leakage emission from electricity consumption supplied by IPS-type \\ & power plants for the transportation of concrete mix materials used in \\ & the production of concrete beyond the baseline level in year y \\ & (tCO_2e/year) \end{tabular}$

7.1 Leakage emission from fossil fuel consumption for transporting concrete mix materials used in the production of concrete exceeding the baseline production ($LE_{Trans,OB,FF,y}$)

Leakage emission from fossil fuel consumption for transporting concrete mix materials used in the production of concrete exceeding the baseline production shall be calculated using the latest version of the TGO calculation tool: T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion.

7.2 Leakage emission from the use of electricity from the power grid for transporting concrete mix materials used in additional concrete production beyond the baseline level $(LE_{Trans,OB,Elec,y})$

Leakage emission from the use of electricity from the power grid for transporting concrete mix materials used in additional concrete production beyond the baseline level shall be calculated based on the amount of electricity consumed, the grid emission factor, and the transmission and distribution loss rate, as shown in the following equation

$$LE_{Trans,OB,Elec,y} = EC_{Trans,OB,PJ,y} \times EF_{Elec,y} \times (1 + TDL_y) \times 10^{-3}$$
 Equation (29)

Where

EC_{Trans,OB,PJ,y} = Electricity consumption for transporting concrete mix materials used in the production of concrete exceeding the baseline level in year y (tCO₂e/year)

EF_{Elec,y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL_y = Average technical transmission and distribution losses for providing electricity in year y (%)

7.3 Leakage emission from electricity consumption supplied by IPS-type power plants for the transportation of concrete mix materials used in the production of concrete beyond the baseline level (LE_{Trans.OR.IPS.v})

Leakage emission from electricity consumption supplied by IPS-type power plants for the transportation of concrete mix materials used in the production of concrete beyond the baseline level shall be assessed based on fossil fuel combustion. The allocation principle shall be applied to determine the proportion of fuel use attributable to the project activity. The resulting fuel consumption shall then be used to calculate greenhouse gas emissions using the latest version of the TGO calculation tool: T-VER-P-TOOL-02-01: Tool to Calculate Project or Leakage CO₂ Emissions from Fossil Fuel Combustion.

$$FC_{Trans,OB,IPS,y} = (1/\eta_{IPS,y}) \times TFC_{IPS,y} \times \left[\frac{(3.6 \times EC_{trans,OB,PJ,y})}{(HG_{IPS,y} + (3.6 \times EG_{IPS,y}))} \right]$$
 Equation (30)

Where

FC_{Trans,OB,IPS,y} = Fossil fuel consumption for electricity generation in the purchased portion used for transporting concrete mix materials associated with

		increased concrete production beyond the baseline level in year y
		(tCO ₂ e/year)
$TFC_{IPS,y}$	=	Total fossil fuel consumption by the power plant(s) supplying electricity
		and/or steam for use in year y (Unit/year)
$HG_{IPS,y}$	=	Total heat output generated by power plant(s) supplying electricity
		and/or steam used in year y (MJ/year)
$EG_{IPS,y}$	=	Total electricity output generated by power plant(s) supplying electricity
		and/or steam used in year y (kWh/year)
$\eta_{IPS,y}$	=	Average annual efficiency of the power plant in year y
		(value between 0 and 1)

8. Emission Reduction

Emission reduction can be calculated as followed:

$$ER_y = BE_y - PE_y - LE_y$$
 Equation (31)

Where

 ER_v = Emission reductions in year y (tCO₂e/year)

BE_v = Baseline emissions in year y (tCO₂e/year)

 PE_v = Project emissions in year y (tCO₂e/year)

 LE_v = Leakage emission in year y (tCO₂e/year)

9. Monitoring Plan

9.1 Monitoring approach

The project developer explains and specify the steps for monitoring the project activity data (Activity data) or verify all measurement results in the project proposal document. including the type of measuring instruments used Person responsible for monitoring results and verifying information Calibration of measuring instruments (if any) and procedures for warranty and quality control Where methods have different options, such as using default values or on-site measurements The project developer must specify which option to use. In addition, the installation, maintenance and calibration of measuring instruments should be carried out in accordance with the instructions of the equipment manufacturer and in accordance with national standards. or international standards such as IEC, ISO.

2) All data collected as part of the greenhouse gas reduction monitoring. The data should be stored in electronic file format and the retention period is in accordance with the guidelines set by the Administrative Organization or the organization's quality system, but the period of time is not less than that specified by the TGO. Must follow the follow-up methods specified in the follow-up parameters specified in Table 9.2.

9.2 Data and parameters monitored

Parameter	Q _{Concrete,PJ,i,y}
Unit	t concrete/year
Description	Quantity of concrete type i produced by the project activity in year y
Source of data	Record of the amount of concrete used from concrete manufacturers
Measurement	Weighing of concrete load
procedures	
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	$Q_{Cement,PJ,j,y}$
Unit	t concrete/year
Description	Quantity of cement type j used for concrete production under the project activity
	in year y
Source of data	Record of the amount of concrete used from concrete manufacturers
Measurement	Weighing of concrete load
procedures	
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	$Q_{C,PJ,Test,i,y}$
Unit	gram of C/gram of project tested concrete
Description	Average carbon (C) content in samples of concrete type i from the project
	activity in year y
Source of data	The results of the carbon content analysis in type I concrete samples under
	baseline conditions, conducted using reliable scientific instruments or analytical
	techniques
Measurement	Carbon content analysis in type i concrete samples conducted during project
procedures	implementation, using reliable scientific instruments or analytical techniques
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	$ ho_{\text{co2,b}}$
Unit	kg/m³
Description	Density of CO ₂ under operating conditions in concrete production batch b

Source of data	Table showing the density of CO ₂ under various operational conditions.
Measurement	Use the values from the table that correspond to the operational conditions of
procedures	CO ₂ used in delivery to the carbonation plant
Monitoring frequency	Each time concrete type n is produced in concrete production batch b

Parameter	%V/V _{CO2,Feed,i,b,y}	
Unit	-	
Description	Volumetric proportion of CO ₂ to total gas volume at the injection point of the	
	carbonation plant, measured during concrete production batch b under	
	operational conditions in year y	
Source of data	Project data record	
Measurement	Continuous volumetric analysis, in conjunction with pressure and temperature	
procedures	measurements of the gas, is conducted to calculate the composition under	
	standard conditions. The use of Gas Chromatography must be approved by the	
	relevant authorities	
Monitoring frequency	Continuous monitoring and at least monthly recording are required for the	
	production of type n concrete during production cycle b	

Parameter	$V_{Feed,b}$	
Unit	m^3	
Description	Volume of CO ₂ injected into the carbonation plant during concrete production	
	batch b	
Source of data	Project data record	
Measurement	Continuous gas volume measurement, together with pressure and temperature	
procedures	monitoring, shall be conducted to calculate the volume under standard	
	conditions. The flow meter used must be approved by the relevant authority	
Monitoring frequency	Continuous monitoring and recording, at minimum on a monthly basis, are	
	required for the production of type n concrete during production cycle b	

Parameter	V _{Chamber,b}
Unit	m^3
Description	Void volume within the chamber during concrete production batch b
Source of data	Project data record
Measurement	Measurements from the project
procedures	
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	P _{After,b} and P _{before,b}
Unit	bar

Description	P _{After,b} refer to internal pressure within the chamber after the completion of the	
	concrete production batch b (bar), following the mineral carbonation reaction	
	inside the chamber	
	P _{before,b} refer to internal pressure within the chamber prior to operation during	
	concrete production batch b (bar), before CO ₂ is fed into the chamber	
Source of data	Project data record	
Measurement	Continuous monitoring of pressure, along with measurement of gas volume and	
procedures	temperature, for the purpose of calculating the volume under standard	
	conditions, with the pressure gauge subject to approval by the relevant	
	authority	
Monitoring frequency	Continuous monitoring and at least monthly recording	

Parameter	$T_{After,b}$ and $T_{before,b}$	
Unit	К	
Description	T _{After,b} refer to internal temperature within the chamber after operation during	
	concrete production batch b (K), following completion of the mineral	
	carbonation reaction in the chamber	
	T _{before,b} refer to internal temperature within the chamber prior to operation during	
	concrete production batch b (K), before CO ₂ is injected into the chamber	
Source of data	Project data record	
Measurement	Continuous temperature monitoring, along with gas volume and pressure	
procedures	measurements, for calculating standardized volume, whereby the industrial	
	thermometer must be approved by the relevant authorities.	
Monitoring frequency	Continuous monitoring and at least monthly recording	

Parameter	$Q_{Cement,PJ,i,y}$	
Unit	t cement	
Description	The quantity of cement used in the production of concrete type i in year y	
Source of data	Record the amount of cement used in concrete production from project	
	activities	
Measurement	Verify the correlation between recorded cement consumption and the amount	
procedures	of concrete produced	
Monitoring frequency	Continuous monitoring and at least monthly recording	

Parameter	$Q_{Cement,PJ,Test,i}$
Unit	gram of cement
Description	Quantity of hydraulic cement utilized in the preparation of concrete type i
	samples under the project activity

Source of data	Record the amount of cement used in concrete production from project
	activities
Measurement	
procedures	
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	EC _{Capt,PJ,y} , EC _{LQ,PJ,y} , EC _{Trans,PJ,y} , EC _{Evap,PJ,y} , EC _{MineralC,PJ,y} และ EC _{Trans,OB,PJ,y}	
Unit	kWh/year	
Description	EC _{Capt,PJ,y}	refer to electricity consumption for the capture, separation of
		CO ₂ from other gases, and collection processes in year y
	$EC_{Liq,PJ,y}$	refer to electricity consumption for the CO ₂ liquefaction process
		in year y
	EC _{Trans,PJ,y}	refer to electricity consumption for CO ₂ transportation under
		project operations in year y
	EC _{Evap,PJ,y}	refer to electricity consumption for the preparation of CO ₂ in
		vapor phase under project operations in year y
	EC _{MineralC,PJ,y}	refer to electricity consumption in the mineral carbonation
		production process in year y
	EC _{Trans,OB,PJ,y}	refer to electricity consumption for transporting concrete mix
		materials used in the production of concrete exceeding the
		baseline level in year y
Source of data	Project data re	ecord
Measurement	Measure electricity consumption for relevant processes using instruments such	
procedures	as a kWh meter or record data from monthly electricity purchase documents	
	such as receipts. Measuring instruments must be calibrated by an accredited	
	entity accordin	g to the manufacturer's specifications
Monitoring frequency	Continuous monitoring and at least monthly recording	

Parameter	EF _{Elec,y}
unit	tCO ₂ /MWh
Description	Emission factor for electricity generation/consumption in year y
Source of data	Report on greenhouse gas emissions (Emission Factor) from electricity
	generation/consumption for projects and activities of greenhouse gas reduction
	published by TGO.
Measurement	For the preparation of project proposal documents
procedures	Use the latest EF _{Elec,y} announced by TGO
	For monitoring the results of reducing greenhouse gas emissions
	Use the EF _{Elec,y} values announced by TGO according to the year of the
	crediting period. However, in the case that the year of the crediting period

	does not have $EF_{Elec,y}$ values announced by TGO, use the latest EF_{Ele}	
	values announced by TGO in that year instead.	
Monitoring frequency	-	

Parameter	TDL _y
unit	-
Description	Average technical transmission and distribution losses for providing electricity in
	year y
Source of data	Option 1: Report based on monitoring data in cases where information is
	available on the amount of electricity supplied by the producer and the amount
	of electricity received by the user
	Option 2: Use the most recent value announced by TGO (value = 0.0596),
	which is based on data from the Thailand Energy Balance Report for the year
	2023, by the Department of Alternative Energy Development and Efficiency
Measurement	If Option 1 is chosen, the project developer must monitor the specified value
procedures	annually throughout the monitoring period of greenhouse gas emission
	reductions
	If Option 2 is chosen, the project developer must use this value consistently
	throughout the monitoring period of greenhouse gas emission reduction
Monitoring frequency	To be determined once in the first year of the crediting period

Parameter	$\eta_{\sf IPS,y}$
Unit	-
Description	Average annual efficiency of the power plant in year y
	(value between 0 and 1)
Source of data	Report on energy measurements and energy balance of the power plant
Measurement	Measurements shall be conducted using the power plant's monitoring
procedures	instruments, including:
	Amount of electricity
	Quantity and pressure of steam
	Quantity and temperature of flue gas
	Mass or volume of fossil fuels used
Monitoring frequency	-

Parameter	TFC _{IPS,y}
Unit	unit/year
Description	Total fossil fuel consumption by the power plant(s) supplying electricity and/or
	steam for use in year y
Source of data	Monitoring report and record logs of the power plant

Measurement	Measure the mass or volume of fuel using the power plant's monitoring
procedures	instruments
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	$HC_{Capt,PJ,y}$ and $HC_{Evap,PJ,y}$
Unit	MJ/year
Description	HC _{Capt,PJ,y} refer to heat consumption for the CO ₂ capture, separation from other
	gases, and collection processes in year y
	$HC_{Evap,PJ,y}$ refer to heat consumption for the preparation of CO_2 in vapor phase
	in year y
Source of data	Monitoring report and record logs
Measurement	Measure the quantity and pressure of steam used in the process of CO ₂
procedures	capture and separation from gas using monitoring instruments, and calculate
	the thermal energy value, or obtain records from monthly steam purchase
	documents such as receipts. All monitoring instruments must be calibrated by
	accredited entities in accordance with the manufacturer's specifications
Monitoring frequency	Continuous monitoring and at least monthly recording

Parameter	$HG_{IPS,y}$
Unit	MJ/year
Description	Total heat output generated by power plant(s) supplying electricity and/or
	steam used in year y (MJ/year)
Source of data	Monitoring report and record logs of the power plant
Measurement	Measure the quantity and pressure of steam using the power plant's monitoring
procedures	instruments
Monitoring frequency	-

Parameter	$EG_{IPS,y}$
Unit	kWh/year
Description	Total electricity output generated by power plant(s) supplying electricity and/or
	steam used in year y
Source of data	Monitoring report and record logs of the power plant.
Measurement	Measure electricity consumption using the power plant's monitoring
procedures	instruments.
Monitoring frequency	-

Parameter	$Q_{c,Solvent,PJ,s,y}$
Unit	ton of C
Description	Carbon (C) content in solution type s for concrete mixing in year y

Source of data	Record data from the project
Measurement	Results of carbon content analysis in baseline samples of concrete type n,
procedures	conducted using reliable scientific instruments or analytical techniques
Monitoring frequency	Conduct sampling inspections at least once per year for each type of concrete

Parameter	FC _{Solvent,s,y}
Unit	ton of Solvent/year
Description	Consumption of solvent type s in year y
Source of data	Record the quantity of admixture used for concrete production
Measurement	Verify the correlation between admixture volume used and the quantity of concrete
procedures	produced
Monitoring frequency	Random sampling inspections shall be conducted at least once per year for
	each type of concrete

9.3 Data and parameters not monitored

Parameter	$Q_{C,BL,Test,i}$
Unit	gram of C/gram of project tested concrete
Description	Average carbon (C) content in samples of concrete type i from the baseline case
Source of data	Results of carbon content analysis in baseline samples of concrete type i,
	conducted using credible scientific instruments or analytical techniques
Applicable value	-

Parameter	R
Unit	m³ bar K⁻¹ mol⁻¹
Description	Gas constant
Source of data	Theoretical calculation value
Applicable value	8.314472 x 10 ⁻⁵

Parameter	Q _{Cement,BL,test,i}	
Unit	gram of cement	
Description	Quantity of hydraulic cement utilized in the preparation of concrete type i	
	samples under the baseline scenario	
Source of data	Option 1:	
	Reference value derived from recorded cement usage in concrete sample	
	production under the facility's baseline scenario.	
	Option 2:	

Reference value based on standard ratios for concrete production in p	
implementation, as defined by the quality specifications set by the r	
	authority.
Applicable value	-

Parameter	EF _{HC}	
Unit	tCO ₂ e/ton of cement	
Description	Emission factor from hydraulic cement production	
Source of data	Thai Cement Manufacturers Association	
Applicable value	0.871 tCO ₂ /t cement	

Parameter	EF _{Cement,j}	
Unit	tCO ₂ e/ton of cement	
Description	Emission factor of cement type j under the project activity	
Source of data	Thai Cement Manufacturers Association	
Applicable value	Case 1: Using Portland cement (910 kgCO ₂ e per ton of cement)	
	Case 2: Using hydraulic cement (871 kgCO ₂ e per ton of cement)	

Parameter	Molar mass of C in solvent _s	
Unit	gram	
Description	Mass of carbon in 1 mole (mol) of solution type s	
Source of data	Molecular mass calculation through chemical equations and the periodic table,	
	considering only carbon	
Applicable value	-	

Parameter	Total molar mass of solvent _s	
Unit	gram	
Description	Mass of 1 mole of solution type s	
Source of data	Molecular mass calculation through chemical equations and the periodic table	
Applicable value	-	

Parameter	$\rho_{Solvent,s}$	
Unit	kg/Liter, kg/dm ³	
Description	Density of solution type s	
Source of data	Chemical product labeling or description	
Applicable value	-	

Parameter	EF _{SOLVENT,s,y}	
Unit	tCO ₂ e/ton of Solvent	
Description	Emission factor of solvent type s	
Source of data	Carbon Footprint of Product (CFP) data for the solution	
Applicable value	-	

10. Reference

- 1. Verified Carbon Standard
 - VCS Methodology: VM0032 CO₂ Utilization in Concrete Production, Version 1.0, 5 April 2021
- 2. Gold Standard
 - Methodology: Carbon sequestration through accelerated carbonation of concrete aggregate, Version 1.0, 7-03-2022
- 3. Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834-849.
- Hunt AJ, Sin EHK, Marriott R, Clark JH. Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 2010;3:306–22. https://doi.org/ 10.1002/cssc.200900169.
- 5. Ravikumar, D., Zhang, D., Keoleian, G., Miller, S., Sick, V., & Li, V. (2021). Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nature communications, 12(1), 855.
- Monkman, S. (2018). Sustainable ready mixed concrete production using waste CO₂: A case study. Am. Concr. Ins, 330, 163-174
- 7. Initiative, C. S. (2009). Cement industry energy and CO₂ performance: getting the numbers right. *World Business Council for Sustainable Development*.

Document information T-VER-P-METH-14-02

Version	Amendment	Entry into force	Description
01	-	24 September 2025	Initial adoption