

T-VER-P-METH-01-05

Electricity Generation from Hydrogen for Internal Usage or Grid Reselling

Version 01

Scope: 01 Energy industries

Entry into force on 25 September 2024

1. Methodology	Electricity Generation from Hydrogen for Internal Usage or Grid Reselling		
2. Project Type	Renewable energy or energy used to replace fossil fuels.		
3. Scope	01 – Energy industries		
4. Project Outline	Project activity is to install the electricity generation using hydrogen		
	for distribution to the national grid or for personal use or for direct		
	sale to consumers with private power purchase agreement (Private		
	PPA).		
5. Applicability	Project activity is to generate electricity using hydrogen with one of		
	following conditions:		
	New installation (Greenfield) or		
	2) Improving the existing electricity generation system to support		
	the use of hydrogen fuel as a co-fuel.		
6. Project Conditions	It replaces the electricity generation from fossil fuels with:		
	Grid Reselling		
	Production for own use or production for sale in Private		
	PPA		
	2. It is the electricity generation from hydrogen through a fuel cell		
	or the mixed fuel between natural gas and hydrogen (Co-Firing).		
	3. The project activity is applied the waste heat utilization into the		
	new installation of electricity generation, or the improvement of		
	existing electricity or heat generation systems is not eligible.		
7. Project Starting Date	The date the project owner (employer) and contractor have jointly		
	signed a contract for construction or installation of a greenhouse		
	gas reduction project that will be developed into the T-VER project.		
8. Definition	A type of power plant that can use two or more types of fuel.		
	(Co-firing Powerplant): A type of power plant that can use two or		
	more types of fuel, such as a mixture of natural gas and hydrogen, etc.		
	Fuel Cell: A type of electrochemical cell similar to a battery that		
	creates energy using electrochemical principles that transform the		
	chemical energy of fuel into electricity without having to go through		
	the combustion process. And the combined heat energy is obtained		
	from the process of the inputs for the fuel cell being hydrogen (H ₂)		
	and oxygen (O ₂).		

	Green Hydrogen: The production of hydrogen through the
	electrolysis of water (Electrolysis), which uses electricity produced
	from renewable energy such as sunlight, wind, etc.
	Blue Hydrogen: The production of hydrogen from various chemical
	reactions. that involves the use of fossil fuels such as Steam
	Methane Reforming (SMR), etc. together with the process of
	capturing and storing carbon dioxide (CCS: Carbon dioxide Capture
	and Storage) instead of releasing it into the atmosphere.
	Gray Hydrogen: Hydrogen produced from the steam reforming
	process using natural gas as a raw material.
9. Note	-

Details of T-VER methodology for

Electricity Generation from Hydrogen for Internal Usage or Grid Reselling

1. Greenhouse gas emission reduction activities used in the calculations

Table 1 Sources and types of greenhouse gases

Greenhouse gas emission	Source	Types of greenhouse gas	Details of activities that emit greenhouse gas emissions
Baseline Emission	Electricity generation of the national grid	CO ₂	The burning of fossil fuels to generate electricity of the country's electric power generation structure. which is replaced by electricity generated from renewable energy and sold into the electricity grid, including MEA, PEA, EGAT
Project Emission	Using fossil fuels mixed with hydrogen (Co-Firing)	CO ₂	 Combustion of fossil fuels mixed with hydrogen (Co-Firing) to generate electricity. Combustion of fossil fuels in backup electricity generator and purchasing electricity from the national grid to project activity.
	Fuel cell system	CO ₂	 Purchasing electricity from the national grid supplying to supporting equipment in the fuel cell system. Combustion of fossil fuels in supporting equipment in a fuel cell system.
Leakage	Using Hydrogen	CO ₂	 Process of hydrogen production using fossil fuels as feed. Transportation of hydrogen by vehicle or through pipelines.

2. Applicability and Scope of Project

Project activity includes the installation of new machinery and equipment or the improvement of existing machinery and equipment to use hydrogen in the electricity generation for sale to the electrical grid, or for use at the point of use, or for sale to consumers that located at the out of boundary. Project activity must be the new installation of electricity generation system (Greenfield) or the improvement of the existing electricity generation system to use hydrogen fuel without changing the electricity production capacity or the electricity generation process.

Project scope covers the installation area of the electricity generation system using hydrogen and supporting facilities related to the project's electricity production. That does not include the hydrogen production process.

3. Additionality

The project activity must be proven the additionality using "Guidelines to Additionality Demonstration under the Thailand Voluntary Emission Reduction Program: T-VER" published by the TGO. In addition, project owners or project developers applying BEV electric buses gaining subsidies of electric vehicle promotion from government agencies must create guidelines to prove additional financial operations including amount of all direct and indirect support, such as direct subsidies and various tax deductions, etc.

4. Baseline Scenario

Considering the guidelines for determining the baseline data based on the concept of Below Business as Usual (Below BAU), the baseline data for greenhouse gas emissions from fossil fuel combustion for electricity generation of the national grid or private PPA powerplant substituting with hydrogen fuel is the greenhouse gas emissions from electricity generation based on natural gas.

5. Baseline Emission

The baseline emissions only consider CO₂ emissions from electricity generation using natural gas that is replaced by electricity generation from project activities.

Baseline emissions can be calculated in two cases as follows:

5.1 Case 1: Installation of a new electricity generation system (Greenfield)

Baseline emissions for new installation of electricity generation system (Greenfield) can be calculated as follows.

$$BE_y = EG_{PJ,y} \times EF_{grid,y}$$
 Equation (1)

Where:

 BE_v = Baseline emissions in year y (tCO₂/year)

EG_{PJ.y} = Quantity of net electricity generation that is fed into the national grid/own

use/direct sale in year y (MWh)

EF_{arid.y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

5.2 Case 2: Improving the existing power generation system to support the use of hydrogen

Bassline emissions for improving the existing power generation system to support the use of hydrogen fuel can be calculated as follows:

$$BE_{y} = \frac{EG_{PJ,y} \times SFC_{BL} \times NCV_{BL} \times EF_{CO2,NG}}{\eta_{BL}}$$
Equation (2)

Where:

 BE_v = Baseline Emissions in year y (tCO₂/year)

EG_{PJ.y} = Quantity of net electricity generation that is fed into the national grid/own

use/direct sale in year y (MWh)

SFC_{BI} = Specific fuel consumption of the generator in the baseline activity (unit/MWh)

 $\mathbf{\eta}_{\scriptscriptstyle{\mathrm{BL}}}$ = The efficiency of the generator in the baseline activity

NCV_{BI} = Net Calorific Value of baseline fuel type (GJ/unit)

 $EF_{CO2,NG}$ = CO_2 emissions from the combustion of natural gas (tCO_2/GJ) equaled to 56,100

tCO₂/GJ

6. Project Emission

Project emission only considers CO₂ emissions from electricity generation using hydrogen through a fuel cell system and/or using a mixture of natural gas and hydrogen.

Project emissions are calculated as follows:

$$PE_y = PE_{Cofire,y} + PE_{FuelCell,y}$$
 Equation (3)

Where:

PE_v = Project emissions in year y (tCO₂/year)

PE_{Cofire,y} = Emissions from the use of mixed fuels (natural gas and hydrogen) from the project activity in year y (tCO₂/year)

PE_{FuelCell,y} = Emissions from the use of fuel in fuel cell systems from project activity in year y (tCO₂/year)

6.1 Project emissions from the use of mixed fuels (natural gas and hydrogen) (PE_{Coffre.v})

PE_{Cofire.v} is calculated as follows:

$$PE_{Cofire,y} = m \times EC_{PJ,Cofire,y} \times \frac{\mathbf{\eta}_{PJ}}{\mathbf{\eta}_{BL}} \times EF_{grid,y}$$
 Equation (4)

Where:

PE_{Coffre,y} = Project emissions from the use of mixed fuels (natural gas and hydrogen)

year y (tCO₂/year)

m = Proportion of natural gas in the fuel mixture (%)

EC_{PJ,Cofire,y} = Electricity produced using mixed fuels (natural gas and hydrogen)

from project case in year y (MWh/year)

 η_{PJ} = The efficiency of the generator in the project activity

 η_{BL} = The efficiency of the generator in the baseline activity

EF_{grid,y} = Emission factor for electricity generation/consumption in year y

(tCO₂/MWh)

6.1.1 Proportion of natural gas in the fuel mixture (m)

Proportion of natural gas in the fuel mixture are calculated as follows:

m =
$$FC_{NG,y} \times NCV_{NG}$$
 Equation (5)
 $(FC_{NG,y} \times NCV_{NG}) + (FC_{H2,y} \times NCV_{H2})$

Where:

m = Proportion of natural gas in the fuel mixture (%)

 $FC_{NG,y}$ = Natural gas consumption in year y (unit)

NCV_{NG} = Net Calorific Value of natural gas (GJ/unit)

 $FC_{H2,v}$ = Hydrogen fuel consumption in year y (unit)

NCV_{H2} = Net Calorific Value of hydrogen fuel (GJ/unit)

6.2 Emissions from the use of fuel in fuel cell systems from project case (PE_{FuelCell v})

PE_{FuelCell,v} is calculated as follows:

$$PE_{Fuelcell,v} = PE_{EC,v} + PE_{FF,v}$$
 Equation (6)

Where:

 $PE_{Fuelcell,y}$ = Emissions from the use of fuel in the fuel cell system in year y (tCO₂/year)

 $PE_{EC,y}$ = Emissions from the use of electricity in supporting equipment in the fuel

cell system in year y (tCO₂/year)

PE_{FF,v} = Emissions from the use of fossil fuels in supporting equipment in the fuel

cell system in year y (tCO₂/year)

6.2.1 Emissions from the use of electricity in supporting equipment in the fuel cell system $(PE_{EC,v})$

 $PE_{EC,y}$ can be calculated using electricity consumption, emission factor for electricity use and loss of power in the national grid as follows:

$$PE_{EC,y} = EC_{PJ,FuelCell,y} \times EF_{grid,y} \times (1+TDL_y)$$
 Equation (7)

Where:

PE_{EC.v} = Emissions from the use of electricity in supporting equipment in the fuel

cell system in year y (tCO₂/year)

 $\mathsf{EC}_{\mathsf{PJ},\mathsf{FuelCell},\mathsf{v}}$ = Electricity consumption in supporting equipment in the fuel cell system

in year y (MWh/year)

EF_{grid,y} = Emission factor for electricity generation/consumption in year y (tCO₂/MWh)

TDL_v = Proportion of power loss in the national grid for transmission in year y

6.2.2 Emissions from the use of fossil fuels in supporting equipment in the fuel cell system from the project case $(PE_{FF,\nu})$

PE_{FF,y} is calculated using the calculation tool of T-VER-P-TOOL-02-01 "Calculating CO₂ emissions from fossil fuel combustion from project emission or leakage emission" latest edition

7. Leakage Emission

In the case of not using green hydrogen or blue Hydrogen, the project developer must calculate leakage emissions (CO₂) from the hydrogen production process using engineering theory for example, stoichiometry etc., in addition to leakage emissions hydrogen transportation by piping or vehicle from the production site to project activities.

8. Emission Reduction

Emission reductions are calculated as follows:

$$ER_v = BE_v - PE_v - LE_v$$
 Equation (8)

Where:

ER_v = Emission reductions in year y (tCO₂e/year)

BE_v = Baseline Emissions in year y (tCO₂e/year)

 $PE_v = Project Emissions in year y (tCO₂e/year)$

 LE_v = Leakage emissions in year y (tCO₂e/year)

9. Monitoring Plan

9.1 Measurement Procedures

- 1) The project developer explains and specifies the steps for monitoring the project activity data (Activity data) or verifying all measurement results in the project proposal document. including the type of measuring instruments used Person responsible for monitoring results and verifying information Calibration of measuring instruments (if any) and procedures for warranty and quality control Where methods have different options, such as using default values or onsite measurements The project developer must specify which option to use. In addition, the installation, maintenance, and calibration of measuring instruments should be carried out in accordance with the instructions of the equipment manufacturer and in accordance with national standards, or international standards such as IEC and ISO.
- 2) All data collected as part of the greenhouse gas reduction monitoring. The data should be stored in electronic file format and the retention period is in accordance with the guidelines set by the Administrative Organization or the organization's quality system, but the period of time is not less than that specified by the TGO. Must follow the follow-up methods specified in the follow-up parameters specified in Table 9.3.

9.2 Data and parameters not monitored

Data / Parameter:	NCV _{BL} NCV _{NG} and NCV _{H2}
Data unit:	GJ/unit
Description:	Net Calorific Value of baseline fuel type
Source of data:	Option 1 Net calorific value of fossil fuels specified in the invoice from the fuel
	supplier
	Option 2 Real measurement

Option 3 Report on Thailand's energy statistics such as Department of
Alternative Energy Development and Energy Efficiency Ministry of Energy
Option 4 Reference values from IPCC Table 1.2 of Chapter 1 of Vol. 2 (Energy)
of the 2006 IPCC Guidelines on National GHG Inventories

Data / Parameter:	Ŋ _{BL}
Data unit:	%
Description:	The efficiency of the generator in the baseline activity
Source of data:	Use the maximum efficiency values given by two or more manufacturers of
	generators that use natural gas as fuel.

Data / Parameter:	SFC _{BL}	
Data unit:	unit/MWh	
Description:	Specific fuel consumption of the generator in baseline activity	
Source of data:	Option 1 Actual measurement.	
	Option 2 Manufacturer's information of that device.	

9.3 Data and parameters monitored

Data / Parameter:	FC _{NG,y}
Data unit:	unit
Description:	Natural gas consumption in year y
Source of data:	Report on measurement of natural gas consumption
Measurement	Summary of annual natural gas usage data
Procedures:	
Monitoring frequency:	Continuous monitoring and monthly recording at least

Data / Parameter:	FC _{H2,y}
Data unit:	unit
Description:	Hydrogen fuel consumption in year y
Source of data:	Hydrogen consumption measurement report.
Measurement	Summary of annual hydrogen use data.
Procedures:	
Monitoring frequency:	Continuous monitoring and monthly recording at least

Data / Parameter:	$EG_{PJ,y}$
Data unit:	MWh/year
Description:	Quantity of net electricity generation that is fed into the national grid/own
	use/direct sale in year y (MWh)
Source of data:	Report on measurement of electricity consumption from electricity meter

Measurement	Summary of annual electricity production data
Procedures:	
Monitoring frequency:	Continuous monitoring and monthly recording at least

Data / Parameter:	ŋ _{PJ}
Data unit:	%
Description:	The efficiency of the generator in the project activity
Source of data:	Option 1 Use the highest measured efficiency value during all operating conditions
	of a generator with the same characteristics and using a mixture of natural gas
	and hydrogen as fuel. However, performance testing must be carried out according
	to specified guidelines such as ASME (American Society of Mechanical Engineer)
	etc.
	Option 2 Use the maximum efficiency values of two or more generator
	manufacturers for generators with the same characteristics. It uses a mixture of
	natural gas and hydrogen as fuel.
Measurement	Summary of generator efficiency data on an annual basis
Procedures:	
Monitoring frequency:	Continuous monitoring and monthly recording at least

Data / Parameter:	EC _{PJ,Cofire,y}	
Data unit:	MWh/year	
Description:	Electricity produced using mixed fuels (natural gas and hydrogen) from project	
	case in year y	
Source of data:	Report on measurement of electricity consumption from electricity meter	
Measurement	Summary of annual electricity consumption data	
Procedures:		
Monitoring frequency:	Continuous monitoring and monthly recording at least	

Data / Parameter:	EC _{PJ,FuelCell,y}	
Data unit:	MWh/year	
Description:	Electricity consumption in supporting equipment in the fuel cell system in year y	
Source of data:	Report on measurement of electricity consumption from electricity meter	
Measurement	Summary of annual electricity consumption data.	
Procedures:		
Monitoring frequency:	Continuous monitoring and monthly recording at least	

Data / Parameter:	TDL _y
Data unit:	-
Description: Proportion of power loss in the national grid for transmission in year y	

Source of data:	Option 1 Measurement report in the case where there is information on the			
	amount of electricity issued by the producer and the amount of electricity that the			
	electricity consumer receives			
	Option 2 Use the latest value announced by the TGO.			
Measurement	1) If using option 1, the project developer must monitor the said value every year			
Procedures:	throughout the monitoring. Results of reducing greenhouse gas emissions			
	2) If using option 2, the project developer must use this value throughout the			
	monitoring of greenhouse gas emissions reduction results.			
Monitoring frequency:	Set once in the first year of the carbon credit calculation period.			

Data / Parameter:	EF _{grid,y}		
Data unit:	tCO ₂ /MWh		
Description:	Emission factor for electricity generation/consumption in year y		
Source of data:	Report on greenhouse gas emissions (Emission Factor) from electricity		
	production in national grid and from heat production for greenhouse gas		
	reduction projects and activities announced by the TGO.		
Measurement	For preparing project proposal documents		
Procedures:	Use the latest EF _{grid,y} value announced by the TGO.		
	For following up on the results of reducing greenhouse gas emissions.		
	Use the EF _{grid,y} value announced by the TGO according to the year of the		
	period for which carbon credit certification is requested. In the case that the		
	year of the period for which carbon credit certification is requested does not		
	yet have the $EF_{grid,y}$ value announced by the TGO, use the latest $EF_{grid,y}$ value		
	announced by the TGO instead in that year.		

Reference documents

- 1. AMS-III.AC.: Electricity and/or heat generation using fuel cell Version 1.1
- AM0124: Large-scale Methodology: Hydrogen production from electrolysis of water Version 1.1

Document information T-VER-P-METH-01-05

Version	Amendment	Entry into force	Description
01	-	25 September 2024	Initial adoption.